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Abstract. Motivated by the fact that there may be inaccuracies in features and labels of
training data, we apply robust optimization techniques to study in a principled way the
uncertainty in data features and labels in classification problems and obtain robust
formulations for the three most widely used classification methods: support vector
machines, logistic regression, and decision trees. We show that adding robustness does
not materially change the complexity of the problem and that all robust counterparts can
be solved in practical computational times. We demonstrate the advantage of these
robust formulations over regularized and nominal methods in synthetic data experi-
ments, andwe show that our robust classificationmethods offer improved out-of-sample
accuracy. Furthermore, we run large-scale computational experiments across a sample of
75 data sets from the University of California Irvine Machine Learning Repository and
show that adding robustness to any of the three nonregularized classification methods
improves the accuracy in the majority of the data sets. We observe the most significant
gains for robust classification methods on high-dimensional and difficult classification
problems, with an average improvement in out-of-sample accuracy of robust versus
nominal problems of 5.3% for support vector machines, 4.0% for logistic regression, and
1.3% for decision trees.

History: Dick den Hertog served as the editor-in-chief for this paper.
Funding: This material is based on work supported by the National Science Foundation Graduate
Research Fellowship [Grant 1122374].

Keywords: robust optimization • machine learning • classification problems

1. Introduction
Three of the most widely used classification methods are support vector machines (SVM), logistic regression, and
classification and regression trees (CART) (Friedman et al. 2001). These classifiers are among the state-of-the-art
machine learning methods, giving high out-of-sample accuracy on many real-world data sets and admitting
tractable training algorithms for large-scale problems. However, in many scenarios, the training data are subject to
uncertainty, which can negatively affect the performance of these classifiers. Regularization is a common technique
for mitigating the effect of data uncertainty and addressing the problem of overfitting. In this paper, we propose
a novel approach for developing improved classifiers using techniques from robust optimization to explicitly
model uncertainty in the data in a principled manner.

Support vector machines were first introduced by Cortes and Vapnik (1995) and have gained popularity since
then. SVM classifiers find a hyperplane that maximizes the margin of separation and use a hinge loss function
when the data are not separable. Alternatively, the geometric concept of margin can be viewed as a form of
regularization. Previous work has shown the equivalence between support vector machines and a robust
formulation of the hinge loss classifier (Xu et al. 2009). In this paper, we develop new robust formulations for
SVM and other classifiers, which lead to further gains in out-of-sample accuracy compared to nonrobust
methods.

Logistic regression is one of the oldest and most widely used classification methods that models the
probability of a response belonging to a certain class. The performance of logistic regression can be improved
by introducing a regularization term to penalize model complexity, and the resulting problem can be solved
efficiently for large-scale problems (Friedman et al. 2010). Decision trees, a family of classification methods,
aim to partition the space recursively and make predictions based on the region into which the points fall.
Popular methods such as CART (Breiman et al. 1984) construct the partitions with greedy heuristic methods,
although recently methods have been developed that efficiently find globally optimal solutions to the de-
cision tree problem (Bertsimas and Dunn 2017). In practice, scientists and researchers apply these methods to
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real-world problems using packages which have been developed in R and other programming languages.
Methods for SVM, logistic regression, and CART are included in the R packages E1071, STATS, and RPART,
respectively.

The model training problems for SVM, logistic regression, and decision trees can all be formulated and
solved as traditional optimization problems and therefore can benefit from the systematic improvements in
model formulation and solver speeds in this area. Recent studies have explored using modern mixed-integer
optimization (MIO) methods to solve problems in classical statistics, such as the least quantile squares
(Bertsimas and Mazumder 2014) and best subset selection problems (Bertsimas et al. 2016), and to create
algorithmic approaches for fitting regression models (Bertsimas and King 2015, 2017). These methods have
been successful in part due to dramatic increases in hardware and software computing power for MIO over
the past 30 years.

One of the biggest challenges in the field of machine learning is to design models that avoid the issue of overfitting,
where the model describes the noise instead of the underlying relationship. Strong models should take into
consideration the noise structure duringmodel estimation, and inmany real-world problems, the data representing
both the feature variable (xi, i � 1, . . .n) as well as the label variable (yi, i � 1, . . . , n) are subject to error. For example,
the “Wisconsin Diagnostic Breast Cancer” data set is widely used in themachine learning community. This data set
involves classifying benign and malignant tumors, with features computed from digitized images including the
radius, texture, symmetry, etc. of the cell nuclei. Even though the features in this data set are relatively precisely
measured, the images are not free from noise, and the accuracy of themeasurements depends on the precision of the
recognition programs. More generally, in data sets with missing data that require imputation, uncertainties are also
introduced.

As an example of label uncertainty, in the “Contraceptive Method Choice” data set from the University of
California Irvine (UCI) Machine Learning Repository, women were surveyed to report their current contra-
ceptive method choice, as well as demographic and socioeconomic characteristics. Because of the survey nature
of the data, wemay suspect that some respondents have reported dishonest answers to the questions about their
choice of contraceptive method. In cancer clinical trials, caregivers determine whether or not each patient has
achieved remission, and these labels are subjective and depend upon the accuracy of the tumor measurement.
Another common source for such errors is the employment of labeling personnel to provide labels for the
training set. Therefore, it seems natural to expect that some of the labels may be incorrect when training the
classifier.

1.1. Related Work
To date, there has not been a principled way of modeling data uncertainty directly for classification problems in the
literature. In this paper, we propose a framework based on robust optimization to address classification problems
whose data (both in features and in labels) are subject to error. Robust optimization is a flexible framework for
modeling uncertainty (Ben-Tal et al. 2009) and is arguably one of the fastest-growing areas of optimization in the
last decade. For a wide variety of problems in domains such as finance, statistics, and health care, robust for-
mulations have been shown to be computationally tractable and lead to improved solutions compared to the
classical optimization formulations (Bertsimas et al. 2011). The key advantage of robust solutions is that they
provide near-optimal solutions that remain feasible when problem parameters are perturbed and thus are at-
tractive when the problem is subject to uncertainty.

In particular, robust optimization has been shown to lead to improvements for many statistics problems. In the
machine-learning community, the success of SVM in classification and Lasso in regression has been largely at-
tributed to their regularization terms that reduce data overfitting. Pant et al. (2011) demonstrate how robust
classification can be used to handle situations with imbalanced training data, and Livni et al. (2012) derive
classifiers protected against stochastic adversarial perturbations to the training data. Xu et al. (2009) establish that
robustness is a key reason behind the strong performance of regularized methods, due to the generalization ability
of robustness.

There has been prior work that considered robust optimization classifiers based upon SVM, first proposed in
Bi and Zhang (2005) and Bhattacharyya et al. (2005). These approaches have dealt mainly with feature un-
certainty. One of the robust classification methods proposed in this paper, namely, feature-robust SVM, closely
resembles the linear optimization robust classifiers proposed by Trafalis and Gilbert (2007), except that these
methods contain an additional regularizer term in the objective. This difference is important because, more
recently, it has been shown that a robust optimization formulation of the maximum margin classifier is
equivalent to the classical SVM; thus, methods derived as robust variations to classical SVM are “double-
counting” the effect of robustness (Xu et al. 2009, Bertsimas and Copenhaver 2017). In addition, there have been
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previous attempts to model uncertainties in labels for SVM, although these methods are largely heuristic in
nature and have been tested primarily on synthetic or contaminated data (Biggio et al. 2011, Natarajan et al.
2013). There has also been work on robustifying kernel SVM methods against feature uncertainty by Ben-Tal
et al. (2012). The approach we present could be extended to kernel methods, but this is beyond the scope of
the paper.

For logistic regression, regularized versions such as Elastic Net have been proposed (Zou and Hastie 2005),
which consider adding a convex combination of the ℓ1 and ℓ2-norm penalty to the objective; however these
regularized classifiers were not derived using tools from robust optimization. Using robust optimization, logistic
regression models that are robust to feature uncertainty have been derived for various uncertainty sets (El Ghaoui
et al. 2003, Harrington et al. 2010).

To our knowledge, no work has been done framing decision trees as a robust optimization problem. Because
tractable formulations and solution methods for the optimal decision tree problem were proposed quite recently in
Bertsimas and Dunn (2017), robust optimal decision trees have not been explored.

In summary, results from the literature indicate that ideas from robust optimization have the potential to add
value to existing classificationmethods. Prior work on SVM establishes the equivalence between regularization and
robustness for certain problems, and in some examples robust classifiers yield higher out-of-sample accuracy
compared to nominal methods. However, these works have largely focused on theoretical derivations of robust
methods, with limited testing on synthetic data. Without extensive computational experiments, we do not know
whether these robust classifiers yield gains in out-of-sample accuracy in practice, especially in comparison with
regularized methods.

We build upon these previous efforts to present a framework for robust classification that accommodates three of
the most widely used classification methods: SVM, logistic regression, and CART. By considering a diverse variety
of classifiers, we compare the impact of adding robustness to different models, and we evaluate the performance
of these methods in practice through large-scale computational experiments.

1.2. Contributions
This paper shows how to incorporate robustness in classification problems generally. Under the framework of
robust optimization, we systematically develop new robust methods that offer predictable improvements in out-of-
sample accuracy over nominal classifiers. We summarize our contributions in this paper below:

1. We present a principled framework for robust classification, which combines ideas from robust optimization
and machine learning, with an aim to build classifiers that model data uncertainty directly. Building on previous
work for modeling feature uncertainty, we introduce an approach for modeling uncertainty in labels, as well as
both features and labels simultaneously. By viewing machine-learning algorithms as a family of optimization
problems, we show that the robustification of existing classification methods can be done in a unified and
principled way. This leads to tractable problems with relatively small overhead compared to the original methods.
In particular, we use this framework to derive counterparts to SVM, logistic regression, and CART that are robust to
variations in features and labels in the data. In the case where we consider feature uncertainty only, the resulting
robust formulations for SVM and logistic regression match previous results in the literature.

2. We demonstrate the advantage of robust formulations over regularized and nominal methods through
synthetic data experiments with two classes divided by a separating hyperplane. Compared to nominal and
regularized methods, the robust SVM and logistic regression methods recover the separating hyperplane
classifiers closer to the truth, leading to gains in out-of-sample accuracy, especially in the worst-case
analysis.

3. We demonstrate that robust classification improves out-of-sample accuracy in large-scale computational
experiments across a sample of 75 data sets from the UCI Machine Learning Repository. Furthermore, we identify
characteristics of classification problems for which robust methods lead to significant accuracy gains compared to
nonrobust methods. Specifically, in problems with high-dimensional data and difficult separability, the value of
robustness is even more prominent.

4. We provide a simple, empirically derived decision rule for machine-learning practitioners that predicts with
high accuracy when robust methods can offer significant improvement over the nominal methods, with an average
improvement in out-of-sample accuracy of 5.3% for SVM, 4.0% for logistic regression, and 1.3% for CART.
Compared to regularized SVM or logistic regression, the average out-of-sample accuracy improvement of our
principled approach to robustness is 2.1% over regularized SVM and 1.2% over regularized logistic regression
when this rule is satisfied.

We would like to distinguish robust optimization in statistical problems from the field of robust statistics, developed
by Huber (1981), which studies how an estimator performs under perturbation of the model. Even though both fields
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share the motivation to avoid unduly effects from outliers, the underlying methodologies are totally different and
address the problems from separate angles. Although robust statistics passively evaluates the robustness properties of
a given algorithm, robust optimization actively constructs models that take into account data uncertainty.

The structure of the paper is as follows. In Section 2, we present a selection ofwidely used classificationmethods. In
Section 3, we give a brief introduction to robust optimization and introduce some terms and properties that will be
used later. In Section 4, we demonstrate how to apply robust optimization to the classification methods to derive
a family of classificationmethods that are robust to uncertainty in the features of the training data set. In Section 5, we
repeat this process to developmethods that are robust to uncertainty in data set labels. In Section 6, we combine these
approaches to develop classification methods that are robust to noise in both features and labels. In Section 7, we
compare the performance of these robust classification methods to their nonrobust counterparts and regularized
methods through a series of synthetic data experiments. In Section 8, we comprehensively compare the performance
of our robust classifiers to their benchmark methods on a wide range of real data sets. We conclude in Section 9.

2. Overview of Classification Methods
In this section, we present a selection of widely used methods for classification. These are the methods to which we will
later apply robust optimization techniques. For this section and in the rest of the paper, let {xi, yi}ni�1 be the training data
provided for the classification task, where xi ∈Rp is the feature vector and yi ∈ {−1, 1} is the label for observation i.

2.1. Soft-Margin Support Vector Machines
Soft-margin support vectormachines are a variation on the simplermaximalmargin classifier that relax the requirement
that the data be separable and instead allow for points to be incorrectly classified (Cortes and Vapnik 1995). Support
vector machines use hinge loss as the loss function and balance the minimization of total loss and maximization of
margin with parameter C that can be tuned via validation. This classifier can be formulated as the following problem:

min
w,b

1
2 ‖w‖22 + C

∑n
i�1

max
{
1 − yi(wTxi − b), 0}. (1)

Problem (1) can equivalently be formulated as the following problem:

min
w,b

1
2 ‖w‖22 + C

∑n
i�1

ξi

s.t. yi
(
wTxi − b

)≥ 1 − ξi i � 1, . . . , n,

ξi ≥ 0 i � 1, . . . , n.

(2)

The dual problem can be formulated through the use of Lagrange multipliers:

max
α

C
∑n
i�1

αi − 1
2

∑n
i�1

∑n
j�1

αiαj yi yj xiTxj

s.t. 0≤αi ≤C i � 1, . . . , n,∑n
i�1

αiyi � 0.

Both the primal and dual are convex quadratic optimization problems. Because the dual problem has fewer
decision variables, and the majority of these variables tend to be equal to zero or the cost parameter C in the optimal
solution, it is typically the problem solved in practice (Friedman et al. 2001). In addition, the dual form is ad-
vantageous because it allows us to do the kernel trick to learn nonlinear decision rules (Cortes and Vapnik 1995).
Alternatively, we may modify the objective function of Problem (1) by changing the norm of the regularizer term
from ℓ2 to ℓ1 (Zhu et al. 2004). The resulting classifier is formulated as follows:

min
w,b

‖w‖1 + C
∑n
i�1

ξi

s.t. yi
(
wTxi − b

)≥ 1 − ξi i � 1, . . . , n,

ξi ≥ 0 i � 1, . . . , n.

(3)
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Problem (3), which we refer to as ℓ1-regularized SVM, is equivalent to a linear optimization problem, which is
efficiently solvable.

2.2. Logistic Regression
Logistic regression assumes the response variableY follows a Bernoulli distributionwith the probability depending
on the x and the model parameter β∈Rp, β0 ∈R

P(Y � 1|X � x) � eβ
Tx+β0

1 + eβTx+β0 ,

P(Y � −1|X � x) � 1
1 + eβTx+β0

.

Concisely, the conditional probability can be written as

P
(
Y � yi |X � x

) � 1

1 + e−yi(βTxi+β0)
.

Logistic regression coefficients β and β0 are typically fit using the maximum-likelihood method. The log-
likelihood is

−∑n
i�1

log
(
1 + e−yi(βTxi +β0)).

Therefore, the maximum-likelihood estimators β and β0 aim to solve the following problem:

max
β,β0

−∑n
i�1

log
(
1 + e−yi(βTxi+β0)

)
. (4)

Problem (4) is a concavemaximization problem that is efficiently solvable bymethods such as coordinate descent or
Newton’s method (Bertsekas 1999).

Similar to the regularization techniques in the popular lasso regression (Tibshirani 1996) for variable selection
and shrinkage, a regularization term can be added to the logistic regression likelihood function, giving

max
β,β0

−∑n
i�1

log
(
1 + e−yi(βTxi +β0))−λ‖β		q , (5)

where ‖ · ‖q is a given ℓq norm.

2.3. Decision Trees and CART
Decision trees are a family of classification methods that seek to recursively partition the feature space into disjoint
regions and predict labels for new points based upon the region into which the point falls. The most widely used
method for training decision trees is CART (Breiman et al. 1984), which takes a greedy heuristic approach to
constructing the tree rather than posing the entire process as a single optimization problem.

However, in order to use robust optimization techniques to create robust decision trees, we require the
formulation of the decision-tree training problem as a formal optimization problem. Optimal decision trees
(Bertsimas and Dunn 2017) are a recent method that considers the entire decision-tree learning procedure as
a single mixed-integer optimization problem and uses this to take a globally optimal view while constructing the
tree. To create robust decision-tree methods, we will take the optimal decision tree problem and apply robust
optimization.

Consider the problem of training a general decision tree. At each branch node in the tree, a split of the form
aTx< b is applied. Points that satisfy this constraint will follow the left branch of the tree, whereas those that violate
the constraint follow the right branch. Each leaf node is assigned a label, and each point is assigned the label of the
leaf node into which the point falls. Figure 1 summarizes this for an example decision tree with two branch nodes,
A and B, that apply splits aTAx< bA and aTBx< bB respectively. There are three leaf nodes that assign labels {−1}, {+1},
and {+1} (from left to right in the figure).

Given that the tree contains K nodes, we define the sets 3l
k,3

u
k , and 3k for k � 1, . . . ,K to capture the hierarchy

of the tree.
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• 3l
k � the ancestors of node k in the tree of which we have taken the left branch (a split of the form aTk xi < bk) to

get to node k;
• 3u

k � the ancestors of node k of which we have taken the right branch (a split of the form aTk xi ≥ bk) to get to
node k;

• 3k � 3l
k ∪3u

k , that is, all ancestors of node k.
We will now state the optimal decision tree problem from Bertsimas and Dunn (2017) below as Problem (6) and

then provide an explanation of the model:

min
∑K
k�1

fk −
∑K
k�1

λkdk (6a)

s.t. gk�
∑n
i�1

1 − yi
2

zik k � 1, . . . ,K, (6b)

hk �
∑n
i�1

1 + yi
2

zik k � 1, . . . ,K, (6c)

fk ≤ gk +M[wk + (1 − ck)] k � 1, . . . ,K, (6d)
fk ≤ hk +M[(1 − wk) + (1 − ck)] k � 1, . . . ,K, (6e)
fk ≥ gk −M[(1 − wk) + (1 − ck)] k � 1, . . . ,K, (6f)
fk ≥ hk −M[wk + (1 − ck)] k � 1, . . . ,K, (6g)
dk � 1 k � �K/2�, . . . ,K, (6h)
dk ≤ dj k � 1, . . . ,K,∀j∈3k, (6i)

dk +
∑p
l�1

akl � 1 k � 1, . . . ,K, (6j)

∑K
k�1

zik � 1 i � 1, . . . , n, (6k)

zik ≤ dk i � 1, . . . ,n, k � 1, . . . ,K, (6l)
zik ≤ 1 − dj i � 1, . . . ,n, k � 1, . . . ,K,∀j∈3k, (6m)∑n
i�1

zik ≥Nck k � 1, . . . ,K, (6n)

ck ≥ dk−
∑
j∈3k

dj k � 1, . . . ,K, (6o)

aTj xi + ε≤ bj +M (1 − zik) i � 1, . . . , n, k � 1, . . . ,K,∀j∈3l
k , (6p)

aTj xi ≥ bj −M (1 − zik) i � 1, . . . ,n, k � 1, . . . ,K,∀j∈3u
k , (6q)

ak ∈ {0, 1}p k � 1, . . . ,K, (6r)
0≤ bk ≤ 1 k � 1, . . . ,K, (6s)
zik,wk, ck, dk ∈ {0, 1} i � 1, . . . , n, k � 1, . . . ,K. (6t)

At each node k � 1, . . . ,K in the tree, we must decide whether to apply a split or set the node to be a leaf node. The
binary variable dk takes value 1 if no split is applied, and 0 otherwise.

Figure 1. An Example of a Decision Tree with Two Partition Nodes and Three Leaf Nodes
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If we choose to apply a split at a node k, the variables ak and bk are used to set a split of the form aTk x< bk. Tomirror
the behavior of CART, we only consider univariate decision trees, and, hence, we only allow a single variable to be
used in each split. This is achieved by the constraints (6r), which forces the components of ak to be binary, and (6j)
means we can only choose one of these variables at each node. Note that (6j) also forces a � 0 if dk � 1, so we cannot
apply a split at a node that has been marked as a leaf node.

We use the binary variables zik to track which leaf node k each point i � 1, . . . , n in the training set is assigned.
Constraints (6p) and (6q) ensure that points are assigned only to a node if they satisfy all required splits, whereas
constraints (6l) and (6m) ensure that points can only be assigned to leaf nodes. Finally, (6k) ensures that each point is
assigned to exactly one leaf node.

The objective is to minimize the number of misclassified points. The number of misclassified points in
a node k is tracked by using the variable fk. Note that it is always better to assign the leaf node a label that
agrees with the most common label among points in the node. This means that the misclassification count is
given by the size of the minority label. We use the variables gk and hk to count the number of points of each
label in each node k, which is achieved with constraints (6b) and (6c). Constraints (6d)–(6g) set fk to
min{gk, hk} to count the misclassification in each node, and the objective sums this misclassification over
all nodes.

CART imposes a constraint relating to the minbucket parameter, which requires each leaf node to contain at least
this number of points. Constraints (6n) and (6o) enforce this restriction in the model for a supplied minbucket
parameter N.

The small number of remaining constraints relates to ensuring the decision to split or not at each node is
permitted by the structure of the tree. For example, no leaf node is permitted to have a child node. We omit the full
details of these precedence constraints from this description of the model and instead refer the reader to Bertsimas
and Dunn (2017) for the complete description.

This is a mixed-integer optimization problem that is practically solvable on real-world data sets and leads to
results that are highly competitive with heuristic decision-tree methods like CART [see Bertsimas and Dunn (2017)
for a comprehensive comparison].

3. Brief Overview of Robust Optimization
In this section, we give an overview of robust optimization and introduce the notions of uncertainty sets and
dual norms that will be used later when applying robust optimization techniques to the unified classification
framework.

Robust optimization is a means for modeling uncertainty in optimization problems without the use of prob-
ability distributions. Under this modeling framework, we construct deterministic uncertainty sets that contain
possible values of uncertain parameters. We then seek a solution that is optimal for all such realizations of this
uncertainty. Consider the general optimization problem:

max
x∈-

c(u, x)
s.t. g(u, x) ≤ 0,

where x is the vector of decision variables in feasible region -, u is a vector of given parameters, c is a real-valued
function, g is a vector-valued function, and 0 is the vector of all zeros. Relaxing the assumption that u is fixed, we
assume instead that the realized values of u are restricted to be within some uncertainty set 8. We form the cor-
responding robust optimization problemby optimizing against theworst-case realization of the uncertain parameters
across the entire uncertainty set:

max
x∈-

min
u∈8

c(u, x)
s.t. g(u, x) ≤ 0 ∀u ∈8.

Despite typically having an infinite number of constraints, it is often possible to reformulate the problem as
a deterministic optimization problem with finite size, depending on the choice of uncertainty set 8. The resulting
deterministic problem is deemed the robust counterpart, which may be a problem of the same complexity as the
nominal problem, depending on the structure of 8.

There is extensive evidence in the literature that robust solutions have significant advantages relative to nominal
solutions. A case study of linear optimization problems from the NETLIB library found that in 13 out of
90 problems, the optimal nonrobust solution violates some of the inequality constraints by more than 50% of the
right-hand-side values, when the uncertain coefficients are subject to small (0.01%) perturbations. On the other
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hand, robust solutions for these identical problems, which are feasible for all perturbations up to 0.1%, lead to
objective values that are within 1% of the optimal (Ben-Tal and Nemirovski 2000).

3.1. Dual Norms
Let x � (x1, . . . , xn) be a vector in Rn. For any real number q≥ 1, we define the ℓq norm of x in the standard way,
denoted by ‖x‖q:

‖x‖q ≜
(∑n

i�1
|xi |q

)1
q

.

A particular problem that is encountered frequently when using robust optimization is the so-called dual-norm
problem:

max
‖x‖q≤1

{
aTx

}
.

When q> 1, the optimal solution to this problem is ‖a‖q∗, where q∗ � 1/(1 − 1/q). This ℓq∗ norm is called the dual norm
of the ℓq norm. In addition, when q � 1, it can be shown that the optimal solution to this problem is ‖a‖∞, where the
ℓ∞ norm of a vector x∈Rn is defined by

‖x‖∞ ≜ lim
q→∞ ‖x‖q � max{|x1 |, |x2 |, . . . , |xn |}.

A simple extension to this problem is when the norm of x is restricted by any number ρ> 0. In this case we have the
following:

max
‖x‖q≤ρ

{
aTx

} � max
‖y‖q≤1

{
aT(ρy)} � ρ · max

‖y‖q≤1
{
aTy

}
, (7)

and the optimal solution to this problem is thus ρ ‖a‖q∗ .

4. Robustness Against Uncertainty in Features
In this section, we present the notion of robustifying classificationmethods against uncertainties in the features of the
training set. Using an uncertainty set to model possible values of the features in reality, we then define and state the
feature-robust counterpart for each of the classification methods. We note that the feature-robust counterparts for
SVM and logistic regression are known in the literature, but we include their derivation here for completeness.

4.1. Motivating Feature-Robustness
Uncertainties in the features can arise from measurement errors during data collection and from input errors
during data manipulation and missing value imputation. If left unaddressed, the trained model may be biased
and severely influenced by inaccuracies in the data. Our goal is to train a feature-robust model that takes
such uncertainties into account, which is stable and provides high accuracy in circumstances where data are
perturbed.

With the robust approach, such uncertainties are taken into consideration when training the classifiers. To model
uncertainty in the features of the training set, we assume that the data xi are subject to additive perturbations
Δxi ∈Rp, i � 1, . . . ,n. Let ΔX � (Δx1,Δx2, . . .Δxn) and define the following uncertainty set:

8x � {
ΔX ∈Rn × p | ‖Δxi‖q≤ρ, i � 1, . . . ,n

}
, (8)

where ρ is a parameter controlling the magnitude of the considered perturbations and, hence, the degree to which
the features in the training set are able to deviate from their nominal values.

After introducing these perturbations, the features in the training set take values xi + Δxi, i � 1, . . . ,n. We now
seek to construct a classifier that is robust to all such perturbations ΔX∈8x. To do this, we robustify against this
uncertainty set of feature parameters in each of our classification methods. In practice, the parameter ρ can be
chosen via validation, and the range to be searched over can be fixed if each feature in the data set is normalized.We
also note that when ρ � 0, the problem is equivalent to the nominal problem, and so the nominal solution is
a possible candidate to be considered during validation. This means that the feature-robust classifier will only be
preferred over the nominal method when the validation score is better.
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In addition, note that 8x is the Cartesian product of the sets {Δxi ∈Rp |‖Δxi‖q ≤ρ}, i � 1, . . . ,n. This structure
enables us to derive tractable robust counterparts for all three classification methods. We may consider alternative
uncertainty sets for the feature perturbations as well—for example, polyhedral or ellipsoidal uncertainty sets. Here,
we consider the norm uncertainty set 8x because it admits a simple geometric interpretation and only requires
tuning a single parameter ρ, which makes it tractable to evaluate in the computational experiments and to use in
practice.

We present the reformulated robust counterparts below for soft-margin support vector machines, logistic re-
gression, and optimal decision trees. For eachmethod, we refer to the resulting deterministic optimization problem
as the feature-robust counterpart of that classifier.

4.2. Soft-Margin Support Vector Machines
The regularized support vector machine problem in (2) has been shown by Xu et al. (2009) and Fertis (2009) to be
equivalent to the robust counterpart of a nominal problem under a particular choice of uncertainty set in the
features. These results suggest that the regularization term ‖w‖22 is a by-product of feature robustness. Further
discussion of the equivalence between classical SVM and feature-robust formulations is provided in Appendix A.
In the following sections, to avoid double counting the effect of robustness, we consider the hinge loss classifier
without the regularization term to be the nominal method for SVM:

min
w,b

∑n
i�1

max
{
1 − yi

(
wTxi − b

)
, 0
}
. (9)

Robustifying Problem (9) against the uncertainty set 8x gives the following robust optimization problem:

min
w,b

max
ΔX∈8x

∑n
i�1

max
{
1 − yi

(
wT(xi + Δxi) − b

)
, 0
}
. (10)

We now derive the robust counterpart to Problem (10). Note that this is equivalent to theorem 3 in Xu et al. (2009).

Theorem 1. The robust counterpart to Problem (10) is

min
w,b

∑n
i�1

ξi

s.t. yi
(
wTxi − b

) − ρ‖w‖q∗ ≥ 1 − ξi i � 1, . . . ,n,

ξi ≥ 0 i � 1, . . . ,n.

(11)

where ℓq∗ is the dual norm of ℓq.

Proof. We can reformulate Problem (10) as

min
w,b

∑n
i�1

ξi

s.t. yi
(
wT(xi + Δxi) − b

)≥ 1 − ξi ∀ΔX ∈8x i � 1, . . . ,n,

ξi ≥ 0 i � 1, . . . ,n.

The first constraint must be satisfied for all ΔX ∈8x, thus the constraint is equivalent to

min
ΔX∈8x

(
yiwT

Δxi
)≥ 1 − ξi − yi

(
wTxi − b

)
i � 1, . . . ,n.

Here, for all i � 1, . . . ,n, the minimization term is equal to the objective value of the following optimization
problem:

min
Δxi

yiwT
Δxi

s.t. ‖Δxi‖q ≤ ρ.

Because yi is constant, we recognize this optimization problem as the dual-norm problem. Therefore, by (7), for any
given value of w, the objective value of this problem is −ρ‖w‖q∗ , where ℓq∗ is the dual norm of ℓq. Replacing the
minimization term with this optimal value and rearranging yields (11). □
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Depending on the choice of norm, the feature-robust counterpart of SVM can be solved efficiently by using
various optimization methods. For example, when q � q∗ � 2, feature-robust SVM can be solved by using second-
order cone-optimization methods (Bertsekas 1999). When q � 1, q∗ � ∞ or q � ∞, q∗ � 1, feature-robust SVM can
be reformulated as a linear optimization problem.

4.3. Logistic Regression
Robustifying Problem (4) against the uncertainty set 8x yields the following robust optimization problem:

max
β,β0

min
ΔX∈8x

−∑n
i�1

log
(
1 + e−yi(βT(xi +Δxi)+β0)

)
. (12)

Next, we determine the robust counterpart to Problem (12). We note that similar results on more specific un-
certainty sets have been previously shown in El Ghaoui et al. (2003) and Harrington et al. (2010).

Theorem 2. The robust counterpart to Problem (12) is

max
β,β0

−∑n
i�1

log
(
1 + e−yi(βTxi +β0)+ρ‖β‖q∗

)
, (13)

where ℓq∗ is the dual norm of ℓq.

Proof. Consider the inner minimization problem in (12), which is the following optimization problem:

min
ΔX∈8x

−∑n
i�1

log
(
1 + e−yi(βT(xi +Δxi)+β0)

)
. (14)

Let ωi � yi(βT(xi + Δxi) + β0), and define g(ωi) � −log (1 + e−ωi). The first-order derivative of g with respect to ωi is

dg
dωi

� 1
1 + eωi

,

which is strictly positive. Therefore, for each i � 1, . . . ,n, the solution to the inner minimization problem in (12) is
the same as the solution of the problem

min
Δxi

yi
(
βT(xi + Δxi) + β0

)
s.t. ‖Δxi‖q ≤ρ.

(15)

This is equivalent to the following problem:

yi
(
βTxi + β0

) −max
Δxi

− yiβT
Δxi

s.t. ‖Δxi‖q ≤ ρ.

We recognize this maximization term as the dual-norm problem. Therefore, by (7), the optimal solution is ρ‖β‖q∗ ,
where ℓq∗ is the dual norm of ℓq. We conclude that the optimal value to (15) is yi(βTxi + β0) − ρ‖β‖q∗ . Substituting the
optimal value into the inner minimization problem in (12), we obtain

−∑n
i�1

log
(
1 + e−yi(βTxi +β0)+ρ‖β‖q∗

)
.

Maximizing the above equation over β, β0 yields (13). □

If q≥ 2, the robust counterpart (13) is differentiable (as in the nominal problem) and thus is still solvable by using
gradient and Newton methods. However, if q∈ {1,∞}, then Problem (13) becomes nondifferentiable, and we may
solve it using subgradient methods. Alternatively, we may remodel the nonlinear terms to obtain a differentiable
formulation with linear constraints, which is solvable by using gradient and Newton methods for constrained
optimization (Bertsekas 1999).

Compared to the nominal case, the feature-robust counterpart of logistic regression has an additional ρ‖β‖q∗ term
in the exponent of the logit function. It resembles the regularization term in regularized logistic regression, shown
in Equation (5). However, the additional term from robustness penalizes model complexity in the logit, or log odds
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ratio, whereas the regularization term is a linear penalty on the entire likelihood. The connection between the two
can be shown via a first-order Taylor series expansion of the objective function of the feature-robust counterpart,
which gives the following:

−∑n
i�1

log
(
1 + e−yi(βTxi +β0)

)
−∑n

i�1

e−yi(βTxi +β0)
1 + e−yi(βTxi +β0) ρ‖β‖q∗ .

In cases where ρ‖β‖q∗ is small and its coefficient is close to 1, robustification over features and regularization of
logistic regression are approximately equivalent.

4.4. Optimal Decision Trees
Robustifying Problem (6) against the uncertainty set 8x gives a problem identical to Problem (6) except with the
following constraints in place of the constraints (6p) and (6q):

aTj (xi + Δxi) + ε ≤ bj +M (1 − zik) ∀ΔX∈8x, i � 1, . . . ,n, k � 1, . . . ,K,∀j∈3l
k , (16a)

aTj (xi + Δxi) ≥ bj +M (1 − zik) ∀ΔX∈8x, i � 1, . . . ,n, k � 1, . . . ,K,∀j∈3u
k . (16b)

We refer to this optimization problem as Problem (16).

Theorem 3. The robust counterpart to Problem (16) is identical to Problem (16) except with the following constraints in place
of constraints (16a) and (16b):

aTj xi + ρ + ε≤ bj + (1 − zik) i � 1, . . . , n, k � 1, . . . ,K, ∀j∈3l
k , (17a)

aTj xi − ρ≥ bj + (1 − zik) i � 1, . . . ,n, k � 1, . . . ,K, ∀j∈3l
k . (17b)

Proof. Because constraint (16a) must hold for all ΔX∈8x, this constraint is equivalent to

max
ΔX∈8x

{
aTj Δxi

}≤ bj +M (1 − zik) − aTj xi − ε i � 1, . . . ,n, k � 1, . . . ,K, ∀j∈3l
k.

This maximization term is equal to the optimal value of the following problem:

max aTj Δxi

s.t. ‖Δxi‖q ≤ρ.

We recognize this as the dual-norm problem, and by (7), the optimal value is ρ‖aj‖q∗ , where ℓq∗ is the dual norm
of ℓq. Moreover, if this constraint is to be nontrivial (which requires zik � 1), we know from (6m) that dj � 0 for
all ancestors j∈3l

k. Thus, from (6j) we have that
∑

l ajl � 1, and so together with (6r), we know that a single
element of aj is 1, with all other elements being 0. This means that ‖aj‖q∗ � 1 for any q, so the value of the
maximization term is simply ρ. Rearranging terms yields the constraint (17a). We use an identical approach to
yield (17b) from (16b). □

This remains a linear mixed-integer optimization problem regardless of the original choice of q. The only
difference compared to the nominal problem is the introduction of amargin of size ρ around each bj. The problem is
therefore practically solvable like the nominal problem.

5. Robustness Against Uncertainty in Labels
In this section, we introduce the notion of robustifying classificationmethods against uncertainties in the labels of
the training set. We consider a discrete uncertainty set that limits the number of incorrect labels to be less than or
equal to a fixed number Γ. We then define and state the label-robust counterpart for each of the classification
methods.

5.1. Motivating Label Robustness
Uncertainties in data labels can occur naturally from errors in manual entries, self-reporting, or nonexact, non-
objective label definition. To model uncertainty in the labels of the training set, we consider a scenario where some
number of the supplied labels is incorrect. We introduce variables Δyi ∈ {0, 1}, where 1 indicates that the label was
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incorrect and has in fact been flipped, and 0 indicates that the label was correct. We consider the following
uncertainty set:

8y �
{
Δy∈ {0, 1}n

∣∣∣∣ ∑n
i�1

Δyi ≤ Γ

}
,

where Γ is an integer-valued parameter controlling the number of data points that we allow to be mislabeled.
Observe that in contrast to the uncertainty set over the features,8y cannot be decomposed as the Cartesian product
of smaller uncertainty sets.

We can then model the true labels of the training set as yi(1 − 2Δyi), i � 1, . . . ,n. Applying robust optimization, we
modify the training process so that our classifier is optimized against the worst-case realization Δy ∈8y to obtain
a classifier that is label-robust. In practice, the parameter Γ, which determines the size of our uncertainty set, is often
modeled as a proportion of the total number of data points and can be chosen via validation. Note that when Γ � 0, the
problem is the same as the nominal problem. In this sense, our validation can include the nominal case, so the best label-
robust solution will only be preferred over the nominal case if it leads to an improvement in accuracy in validation.

As in Section 4, we present the reformulated robust counterparts below for logistic regression, SVM, and optimal trees.
For eachmethod,we refer to the resulting deterministic optimization problem as the label-robust counterpart of that classifier.

5.2. Soft-Margin Support Vector Machines
Robustifying Problem (2) against the uncertainty set 8y gives

min
w,b

max
Δy∈8y

∑n
i�1

max
{
1 − yi

(
1 − 2Δyi

)(
wTxi − b

)
, 0
}
. (18)

Theorem 4. The robust counterpart to Problem (18) is

min
∑n
i�1

ξi + Γq +∑n
i�1

ri

s.t. q + ri ≥φi − ξi i � 1, . . . , n,
ξi ≥ 1 − yi

(
wTxi − b

)
i � 1, . . . , n,

ξi ≤ 1 − yi
(
wTxi − b

) +M(1 − si) i � 1, . . . , n,
ξi ≤Msi i � 1, . . . , n,
φi ≥ 1 + yi

(
wTxi − b

)
i � 1, . . . , n,

φi ≤ 1 + yi
(
wTxi − b

) +M(1 − ti) i � 1, . . . , n,
φi ≤Mti i � 1, . . . , n,
ri, ξi,φi ≥ 0 i � 1, . . . , n,
q≥ 0,
s, t ∈{0, 1}n.

(19)

where M is a sufficiently large constant.

Proof. Fix w and b, and consider the inner maximization problem

max
Δy∈8y

∑n
i�1

max
{
1 − yi

(
1 − 2Δyi

)(
wTxi − b

)
, 0
}

i � 1, . . . , n. (20)

Define the functions

fi
(
Δyi

) � max
{
1 − yi

(
1 − 2Δyi

)(
wTxi − b

)
, 0
}
, i � 1, . . . , n.

Because Δyi ∈ {0, 1} for all i, we observe

fi
(
Δyi

) � [ fi(1) − fi(0)]Δyi + fi(0) i � 1, . . . ,n.

Let φi � fi(1) and ξi � fi(0) for i � 1, . . . ,n. It follows that Problem (20) is equivalent to

max
∑n
i�1

(φi − ξi)Δyi + ξi

s.t. Δy∈8y.
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Next, consider the following polyhedron, which is the convex hull of 8y:

3y �
{
Δy∈Rn

∣∣∣∣ 0≤Δyi ≤ 1,
∑n
i�1

Δyi ≤ Γ

}
.

Because the polyhedron 3y has integer extreme points, this problem is equivalent to its linear relaxation

max
∑n
i�1

(φi − ξi)Δyi + ξi

s.t. 0≤Δyi ≤ 1 i � 1, . . . ,n,∑n
i�1

Δyi ≤Γ.

By strong duality, this has the same objective value as its dual problem

min Γq +∑n
i�1

ri +
∑n
i�1

ξi

s.t. q + ri ≥φi − ξi i � 1, . . . ,n,

ri ≥ 0 i � 1, . . . ,n,

q≥ 0.

Minimizing over w and b, this optimization problem becomes

min
∑n
i�1

ξi + Γq +∑n
i�1

ri

s.t. q + ri ≥φi − ξi i � 1, . . . ,n,
ξi � max

{
1 − yi

(
wTxi − b

)
, 0
}

i � 1, . . . ,n,
φi � max

{
1 + yi

(
wTxi − b

)
, 0
}

i � 1, . . . ,n,
ri ≥ 0 i � 1, . . . ,n,
q≥ 0.

Reformulating the problem to specify the values of the variables ξi, φi with linear constraints yields the desired
result. □

Problem (19) is a mixed-integer optimization problem that is practically solvable.

5.3. Logistic Regression
Robustifying Problem (4) against the uncertainty set 8y gives

max
β,β0

min
Δy∈8y

−∑n
i�1

log
(
1 + e−yi(1−2Δyi)(βTxi +β0)

)
. (21)

Theorem 5. The robust counterpart to Problem (21) is

max
β,β0

−∑n
i�1

log
(
1 + e−yi(βTxi +β0)

)
+ Γµ +∑n

i�1
νi

s.t. µ + νi ≤ log
1 + e−yi(βTxi +β0)
1 + eyi(βTxi +β0)

( )
i � 1, . . . , n,

νi ≤ 0 i � 1, . . . , n,

µ≤ 0.

(22)
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Proof. Define the functions fi(Δyi) � −log
(
1 + e−yi(1−2Δyi)(βTxi +β0)

)
for i � 1, . . . ,n. Because Δyi ∈ {0, 1}, we can

express fi(Δyi) as
fi
(
Δyi

) � [ f (1) − f (0)]Δyi + f (0)

� log
1 + e−yi(βTxi + β0)
1 + eyi(βTxi + β0)

( )
Δyi − log

(
1 + e−yi(βTxi +β0)).

We can thus rewrite the inner minimization part of Problem (21) as

min
Δy∈8y

∑n
i�1

log
1 + e−yi(βTxi + β0)
1 + eyi(βTxi + β0)

( )
Δyi − log

(
1 + e−yi(βTxi +β0))

[ ]
. (23)

Because the convex hull of 8y has integer extreme points, Problem (23) has the same objective as its linear op-
timization relaxation (Bertsimas and Tsitsiklis 2008)

min
Δy

∑n
i�1

log
1 + e−yi(βTxi + β0)
1 + eyi(βTxi + β0)

( )
Δyi − log

(
1 + e−yi(βTxi + β0))

[ ]

s.t. 0≤Δyi ≤ 1 i � 1, . . . ,n,

∑n
i�1

Δyi ≤ Γ.

(24)

By strong duality, the optimal value to Problem (24) is equal to that of its dual problem

max −∑n
i�1

log
(
1 + e−yi(βTxi + β0)) + Γµ +∑n

i�1
νi

s.t. µ + νi ≤ log
1 + e−yi(βTxi + β0)
1 + eyi(βTxi + β0)

( )
i � 1, . . . ,n,

νi ≤ 0 i � 1, . . . ,n,

µ≤ 0.

Substituting this back into Problem (21) in place of the inner minimization, it becomes a single maximization
problem, giving the stated result. □

This problem has a twice continuously differentiable concave objective function and constraints, making it
tractably solvable with an interior point method (Bertsekas 1999).

5.4. Optimal Decision Trees
Robustifying Problem (6a) against the uncertainty set 8y gives a problem identical to Problem (6) with the fol-
lowing constraints in place of constraints (6b)–(6g):

gk �
∑n
i�1

1 − yi
(
1 − 2Δyi

)
2

zik k � 1, . . . ,K, (25a)

hk �
∑n
i�1

1 + yi
(
1 − 2Δyi

)
2

zik k � 1, . . . ,K, (25b)

fk ≤ gk +M[wk + (1 − ck)] ∀Δy ∈8y, k � 1, . . . ,K, (25c)
fk ≤ hk +M[(1 − wk) + (1 − ck)] ∀Δy ∈8y, k � 1, . . . ,K, (25d)
fk ≥ gk −M[(1 − wk) + (1 − ck)] ∀Δy ∈8y, k � 1, . . . ,K, (25e)
fk ≥ hk −M[wk + (1 − ck)] ∀Δy∈8y, k � 1, . . . ,K. (25f)

We refer to this optimization problem as Problem (25).
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Theorem 6. The robust counterpart to Problem (25) is identical to Problem (25) with the following constraints in place of
constraints (25a)–(25f):

gk �
∑n
i�1

1 − yi
2

zik k � 1, . . . ,K, (26a)

hk �
∑n
i�1

1 + yi
2

zik k � 1, . . . ,K, (26b)

fk ≤ gk − Γµ1,k −
∑n
i�1

ν1,ik +M[wk + (1 − ck)] k � 1, . . . ,K, (26c)

fk ≤ hk − Γµ2,k −
∑n
i�1

ν2,ik +M[(1 − wk) + (1 − ck)] k � 1, . . . ,K, (26d)

fk ≥ gk + Γµ3,k +
∑n
i�1

ν3,ik −M[(1 − wk) + (1 − ck)] k � 1, . . . ,K, (26e)

fk ≥ hk + Γµ4,k +
∑n
i�1

ν4,ik −M[wk + (1 − ck)] k � 1, . . . ,K, (26f)

µm,k + νm,ik ≥−yizik i � 1, . . . ,n, k � 1, . . . ,K, m � 1, 4, (26g)
µm,k + νm,ik ≥ yizik i � 1, . . . ,n, k � 1, . . . ,K, m � 2, 3, (26h)
µm,k , νm,ik ≥ 0 i � 1, . . . ,n, k � 1, . . . ,K, m � 1, . . . , 4. (26i)

Proof. We can substitute (25a) into constraint (25c) to obtain

∑n
i�1

1 − yi
(
1 − 2Δyi

)
2

zik ≥ fk −M[wk + (1 − ck)] ∀Δy ∈8y, k � 1, . . . ,K,

∑n
i�1

1 − yi
2

zik +
∑n
i�1

yizikΔyi ≥ fk −M[wk + (1 − ck)] ∀Δy ∈8y, k � 1, . . . ,K.

Because this must hold for all Δy ∈8y, this is equivalent to the following constraint:

∑n
i�1

1 − yi
2

zik + min
Δy∈8y

∑n
i�1

yizikΔyi

{ }
≥ fk −M[wk + (1 − ck)] k � 1, . . . ,K.

The convex hull of8y has integer extreme points, so the value of the minimization term is equivalent to the optimal
value of its linear relaxation (for any fixed k)

min
∑n
i�1

yizikΔyi

s.t. 0≤Δyi ≤ 1 i � 1, . . . ,n,∑n
i�1

Δyi ≤Γ.

By strong duality, this problem has the same optimal objective value as its dual

max Γµ1,k +
∑n
i�1

ν1,ik

s.t. µ1,k + ν1,ik ≤ yizik i � 1, . . . , n,

µ1,k, ν1,ik ≤ 0 i � 1, . . . , n.
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Substituting this back into the original constraint gives

∑n
i�1

1 − yi
2

zik + Γµ1,k +
∑n
i�1

ν1,ik ≥ fk −M[wk + (1 − ck)] k � 1, . . . ,K,

µ1,k + ν1,ik ≤ yizik i � 1, . . . ,n,

µ1,k, ν1,ik ≤ 0 i � 1, . . . ,n.

We substitute back for the original definition of gk from (6b) and change the signs of µ and ν to get

gk − Γµ1,k −
∑n
i�1

ν1,ik ≥ fk −M[wk + (1 − ck)] k � 1, . . . ,K,

µ1,k + ν1,ik ≥−yizik i � 1, . . . ,n,

µ1,k, ν1,ik ≥ 0 i � 1, . . . ,n.

We can rearrange this to obtain constraint (26c), as well as parts of constraints (26g) and (26i).
We repeat this entire process identically for constraints (25d)–(25f) to achieve the stated result. □

Similar to before, this remains a linear mixed-integer optimization problem, and so is practically solvable. The label
robustification for optimal decision trees also has a simple geometric interpretation. Recall that in the model, gk is the
number of points in node k with label yi � +1, hk is the number of points in node k with label yi � −1, and fk is the
number of points in node k that are misclassified, which in the nominal case is simply min{gk, hk}. In the label-robust
counterpart, the extra terms in these constraints require feasible solutions to have strict separation between fk, gk, and
hk. Indeed, we can obtain a feasible solution by setting µm,k � 1 and νm,ik � 0, which then requires |gk − hk | ≥ 2Γ, and
fk � min{gk, hk} + Γ. This means that a feasible label-robust solution requires the majority class in each node to be
a strict majority, and the size of this required separation is controlled by the robustness parameter Γ. Increasing Γ has
the effect of increasing the label purity of all nodes in the tree, because trees that do not have the required margin
between gk and hk at every node k in the tree are treated as being infeasible for the label-robust problem.

6. Robustness in Both Features and Labels
In this section, we consider applying the methods of Sections 4 and 5 simultaneously to construct a new
family of classifiers that are robust to uncertainty in both features and labels. We will refer to this family as
robust-in-both classifiers. To develop these classifiers, we simply expose the classification problem to both
feature uncertainty with uncertainty set 8x, and label uncertainty with uncertainty set 8y. This is a natural
extension of our previous methods to handle classification problems that may have errors in both the
features and labels of the training data. For example, in the contraceptive-method-choice data set considered
in Section 5, survey data are used to obtain information on both the features (demographic and socio-
economic characteristics) and labels (contraceptive method choice), and both factors may be influenced by
inaccurate reporting.

We present the reformulated robust counterparts below for soft-margin support vector machines, logistic re-
gression, and optimal decisions trees, which we refer to as the robust-in-both counterpart for eachmethod. The proofs
are similar to the derivations of the robust counterparts in the previous two sections and are included in
Appendix B.

Like both methods individually, the robust-in-both classifier has to select the robustness parameters ρ and Γ
through validation. As per the individual cases, when we set ρ � Γ � 0, the problem reduces to the nominal
problem. Note also that if only one of ρ/Γ is zero, the problem reduces to the label-robust/feature-robust problem
respectively. This means that as part of the robust-in-both validation process, we consider the models from the
nominal, feature-robust and label-robust classifiers in addition to the robust-in-both classifier and then select the
classifier among these with the best validation accuracy. In this sense, the robust-in-both classifier is the strongest of
all the robust classifiers, because it selects in validation the best-performing robust classifier of all those we have
considered.

6.1. Soft-Margin Support Vector Machines
Robustifying Problem (1) against both 8x and 8y gives the following robust optimization problem:

min
w,b

max
Δy∈8y

max
ΔX∈8x

∑n
i�1

max
{
1 − yi

(
1 − 2Δyi

)(
wT(xi + Δxi) − b

)
, 0
}
. (27)
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Theorem 7. The robust counterpart to Problem (27) is

min
∑n
i�1

ξi + Γq +∑n
i�1

ri

s.t. q + ri ≥φi − ξi i � 1, . . . ,n,

ξi ≥ 1 − yi
(
wTxi − b

) + ρ‖w‖q∗ i � 1, . . . ,n,

ξi ≤ 1 − yi
(
wTxi − b

) + ρ‖w‖q∗ +M(1 − si) i � 1, . . . ,n,

ξi ≤Msi i � 1, . . . ,n,

φi ≥ 1 + yi
(
wTxi − b

) + ρ‖w‖q∗ i � 1, . . . ,n,

φi ≤ 1 + yi
(
wTxi − b

) + ρ‖w‖q∗ +M(1 − ti) i � 1, . . . ,n,

φi ≤Mti i � 1, . . . ,n,

ri, ξi,φi ≥ 0 i � 1, . . . ,n,

q≥ 0,

s, t∈ {0, 1}n.

(28)

where ℓq∗ is the dual norm of ℓq, and M is a sufficiently large constant.

The proof of Theorem 7 is straightforward, and it is provided in Appendix B.
Problem (28) is a mixed-integer optimization problem that is practically solvable.

6.2. Logistic Regression
Robustifying Problem (4) against both 8x and 8y gives the following robust optimization problem:

max
β,β0

min
Δy∈8y

min
ΔX∈8x

−∑n
i�1

log
(
1 + e−yi(1− 2Δyi)(βT(xi +Δxi)+β0)

)
. (29)

Theorem 8. The robust counterpart to Problem (29) is

max −∑n
i�1

log
(
1 + e−yi(βTxi +β0)+ρ‖β‖q∗

)
+ Γµ +∑n

i�1
νi

s.t. µ + νi ≤ log
1 + e−yi(βTxi +β0)+ρ‖β‖q∗

1 + eyi(βTxi +β0)+ρ‖β‖q∗

( )
i � 1, . . . ,n,

νi ≤ 0 i � 1, . . . ,n,

µ≤ 0.

(30)

where ℓq∗ is the dual norm of ℓq.

The proof of Theorem 8 can be found in Appendix B. It essentially applies the process in the proof for feature-
robust logistic regression, followed by the process in the proof for label robustness to obtain the final robust
counterpart.

Problem (30) is amaximization of a concave, twice continuously differentiable function in β and β0 with constraints
for any given ρ and Γ. Therefore, we can solve this problem using interior point methods (Bertsekas 1999).

6.3. Optimal Decision Trees
Robustifying Problem (6) against both 8x and 8y gives a problem identical to Problem (6) with the following
exceptions:

• The constraints in (16) in place of constraints (6p) and (6q);
• The constraints in (25) in place of constraints (6b)–(6g).

Theorem 9. The robust counterpart to the above problem is identical to Problem (6) with the following exceptions:
• The constraints in (17) in place of constraints (6p) and (6q);
• The constraints in (26) in place of constraints (6b)–(6g).
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The proof of Theorem 9 is given in Appendix B, and the complete robust-in-both formulation is stated in full.
This resulting problem is still a linear mixed-integer optimization problem, and so remains practically solvable.

7. Computational Experiments with Synthetic Data Sets
In this section, we evaluate the performance of robust methods on synthetically generated data sets in order to
understand the relative performance of the different types of robustness and also how robust methods compare to
the regularized methods used in practice. In these experiments, we run SVM and logistic regression methods
to recover the separating hyperplane classifier on a synthetic example. We focus on SVM and logistic regression in
this analysis because both of these classification models are suitable given the data-generation process and have
widely used regularized methods to compare against.

7.1. Experimental Setup
The experiment uses data in R2. The data are generated synthetically in three parts:

1. Twenty-five points are generated asmultivariate random normal,N(1.5e, I), where e is the vector of ones and I
is the identity matrix. These points are given the label +1.

2. Twenty-five points are generated as multivariate random normal, N(−1.5e, I) and labeled −1.
3. Ten outlier points are introduced as multivariate random normal, N(0, 3I), where 0 is the vector of zeros. The

labels are randomly generated as either −1 or +1.
We split these data 75%/25% into training and validation sets, which we used to tune the parameters for the

regularized and robust methods. We included relatively few points in the training and validation sets to make the
classification task nontrivial given the simple data-generation process. To create the test set, we generated 10,000
points in the same way as each major cluster of points (items 1 and 2 above).

An example of a data set generated according to this procedure is shown in Figure 2. We can see that there are
two distinct clusters of points, with some scattered noise centered in the area between the two clusters. By the
symmetry of this data-generation process, we can see that the true hyperplane separating the two clusters of points
is given by the equation eTx � 0, also shown in Figure 2. The goal of the experiment is to determine how closely the
various methods can recover this truth in the data in the presence of added noise via the addition of these outlier
points. In particular, we are interested in the following two measures:

• Accuracy:Wemeasure accuracy by reporting the out-of-sample error of the trained classifiers on the larger test
set.

• Similarity: To evaluate the ability of each method to recover the truth in the data, we measure the norm of the
difference between the separating hyperplane generated by the methods and the true hyperplane (eTx � 0).

7.2. Classification Methods
For these experiments, we considered SVM and logistic regression, as these both create classifiers with a single
hyperplane, which matches the truth in the synthetic data. In both cases, we compared the nominal method, the
regularizedmethod, and all three robust methods (features, labels, and both). Eachmethodwas implemented in the
JULIA programming language, a rapidly maturing language designed for high-performance scientific computing
(Bezanson et al. 2017). The optimization problems required by each method were formulated in JUMP, a state-of-
the-art library for algebraic modeling and mathematical optimization (Lubin and Dunning 2015). The commercial
solver GUROBI (Gurobi Optimization Inc. 2015) was used to solve the linear and mixed-integer optimization

Figure 2. Example of Synthetically Generated Data in Two Dimensions Alongside the True Generating Hyperplane

Bertsimas et al.: Robust Classification
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problems for SVM, and the open source solver IPOPT (Wächter and Biegler 2006) was used to solve the convex
optimization problems for logistic regression.

To ensure a fair comparison, we used the ℓ1 norm in the regularized methods and set q � ∞ for the feature
uncertainty set so that the norms in the robust methods are also ℓ1 norms. For each method, the values of ρ and Γ
were selected through validation when using the corresponding robust classifiers.

7.3. Results
This experiment was repeated 2,000 times, and we present the means and standard errors of the two measures for
each method in Table 1. For SVM, the nominal and regularized methods have roughly the same power in recovering
the truth in the data, after accounting for the standard errors. The feature-robust method improves upon the nominal
method in both measures, and the label-robust method further improves upon both measures. The best performance
in both measures is obtained when we consider both types of robustness simultaneously in the robust-in-both
method, and this method improves significantly upon both methods that consider only a single type of robustness.

For logistic regression, we see that the nominal method performs the worst in both measures. The regularized
method and our feature-robust method are roughly comparable, with the regularizedmethod having a slight edge,
and both offering a small improvement over the nominal method. As with SVM, the label-robust method offers
significant improvement in both measures, and the robust-in-both method adds a further slight improvement on
top of label-robust, showing that considering both types of robustness leads to additional power over considering
just a single type.

In Table 2, we break down the results by percentile in out-of-sample error, and we report the 10th, 20th, . . . , 90th

percentiles for each method. We find that robust methods match or outperform nominal and regularized methods
across the board, and this relative improvement increases as the percentile increases. This follows our expectation
that these robust methods reliably produce high-quality classifiers, which protects us from giving biased pre-
dictions in worst-case scenarios. In the worst-case scenario presented (90th percentile out-of-sample error), robust-
in-both SVM and logistic regression yield out-of-sample errors of 3.325% and 3.515%, whereas regularized
methods give out-of-sample errors of 3.941% and 4.041%, respectively.

From these experiments on synthetic data, we conclude that our robust classifiers can effectively deal with data
that have been contaminated with noise. For both SVM and logistic regression, we observe that the robust methods
offer significant improvements over the nominal and regularized methods, both in their accuracy and in their

Table 1. Performance Results for Synthetic Data Experiments

Support vector machines Logistic regression

Method Out-of-sample error (%) Distance from truth Out-of-sample error (%) Distance from truth

Nominal 2.571± 0.021 0.357± 0.004 2.717± 0.023 0.388± 0.004
Regularized 2.643± 0.027 0.357± 0.004 2.694± 0.022 0.384± 0.004
Features 2.516± 0.020 0.345± 0.004 2.701± 0.023 0.386± 0.004
Labels 2.396± 0.018 0.320± 0.004 2.450± 0.019 0.332± 0.004
Both 2.363± 0.018 0.310± 0.004 2.436± 0.019 0.329± 0.004

Note. For each method, we report themean and standard error over 2,000 runs for both the out-of-sample error and the distance of the generated
classifier from the truth in the data.

Table 2. Out-of-Sample Error Results by Percentile for Synthetic Data Experiments

Percentile

Classifier Method 90th 70th 50th 30th 10th

Support vector machines Nominal 3.771 2.695 2.275 1.985 1.774
Regularized 3.941 2.700 2.235 1.975 1.775
Features 3.651 2.650 2.225 1.965 1.755
Labels 3.381 2.460 2.125 1.915 1.755
Both 3.325 2.425 2.100 1.890 1.740

Logistic regression Nominal 4.096 2.940 2.400 2.050 1.795
Regularized 4.041 2.910 2.385 2.045 1.795
Features 4.050 2.917 2.393 2.043 1.790
Labels 3.552 2.565 2.175 1.928 1.745
Both 3.515 2.550 2.165 1.920 1.745

Bertsimas et al.: Robust Classification
20 INFORMS Journal on Optimization, 2019, vol. 1, no. 1, pp. 2–34, © 2018 INFORMS



ability to correctly recover the truth in the data. Furthermore, we found that the robust-in-both methods that
combine robustness in the features and labels performed stronger than the feature-robust and label-robust methods
individually, demonstrating that there is value in considering both types of uncertainty simultaneously.

8. Computational Experiments with Real-World Data Sets
In this section, we report on a series of comprehensive computational benchmarks to compare robust methods to
their nominal counterparts. We also explore problem characteristics that influence the performance gain of robust
methods and derive a simple decision rule recommending when robust classification should be applied.

8.1. Experimental Setup
In order to comprehensively report performance of the robust classificationmethods on real data sets, we tested the
accuracy of these methods on a selection of 75 problems from the UCI Machine Learning Repository (Lichman
2013). The data sets were selected to give a variety of problem sizes and difficulties to form a representative sample
of real-world problems, with the largest data set having n � 245, 057 observations and the highest number of
features being p � 857.

To obtain a binary classification problem for each data set, we considered the one-versus-rest problem of pre-
dicting the occurrence of the first class in the data set. Each data set was split into three parts: the training set (60%),
the validation set (20%), and the testing set (20%). The training set was used to train each classifier for a variety of
combinations of input parameters. For each combination of parameters, themisclassification error on the validation
set was calculated, and this was used to select the best combination of parameters for each classifier. Finally, the
classifier was trained by using these best parameters on the combined training and validation sets, before reporting
the out-of-sample misclassification error on the testing set. All methods were trained, validated, and tested on the
same random splits, and computational experiments were repeated five times for each data set with different splits.
For each data set and classification method, we report the average out-of-sample accuracy across all five splits.

8.2. Classification Methods
In these real-world experiments, we considered all three classification methods: SVM, logistic regression, and
decision trees. We set q�∞ for all of the feature-robust and robust-in-both uncertainty sets, so that all the norms in
the robust methods are ℓ1. The implementations for SVM and logistic regression were identical to those used in the
synthetic experiments, which are described in Section 7.1. We implemented optimal decision trees using the JuMP
software package in JULIA, and the commercial solver GUROBI (Gurobi Optimization Inc. 2015) was used to solve the
mixed-integer optimization problems.

As in the other two methods, for optimal decision trees, we selected the values of ρ and Γ through validation
when using the corresponding robust classifier. During validation, we also selected the complexity parameter (cp),
the minimum number of points per node (minbucket), and the exploration depth around the warm start solution
(explorationdepth). See Bertsimas and Dunn (2017) for a full description of these parameters. We compare the
robust counterparts of the optimal decision tree problem to the CART heuristic rather than the nominal optimal
decision tree problem. This allowed us to provide a benchmark of the robust methods against the state-of-the-art

Figure 3. Pairwise Comparisons Between Nominal and Individual Robust Methods

Notes. For each type of robustness, the plots compare that particular robust method and the nominal method and show the number of data sets
for which each had the highest out-of-sample accuracy. CART, classification and regression trees; SVM, support vector machines.
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methods that are widely used today. For the CARTmethod, we used the RPART package (Therneau et al. 2015) in the
R programming language (R Core Team 2015).

Table 3 shows the out-of-sample accuracy performance of each classification method and its robust counterparts
on all selected data sets. For each data set, the best result (or multiple in the case of ties) for each method is indicated
in bold, and the best method overall for the data set is underlined.

8.3. Pairwise Comparisons
First, we present the results comparing individual robust classification methods against their nominal counterparts.

Results for the three nominal methods and all robust variations are summarized in Figure 3. Each pair of bars in
the graph represents a pairwise comparison between a specific robust method and its nominal counterpart. Each
bar represents the number of data sets for which the either the robust or nominal method produced the single
strongest classifier, based on out-of-sample accuracy. We see that for each classification method, all types of
robustness have a lead over the nominal ones. In the case of logistic regression and SVM, robust-in-both produces
the most improvement in the number of correctly classified data sets. However, for CART, it is the feature robust
method that is most effective in improving classification over the nominal counterpart. Because the robust-in-both
method encompasses the individual feature and label robust methods, this result could be due to difficulties in
validation where the selected combination of robustness parameters did not lead to better out-of-sample per-
formance than the individual robust methods. The exact counts of wins, ties, and losses for each robust counterpart
compared to the corresponding nominal method are shown in Table 4.

Next, we considered the best of the nominal and robust-in-both methods across SVM, logistic regression, and
CART. For each data set, we recorded which of these six methods had the highest out-of-sample accuracy.
Figure 4 shows the breakdown of counts for data sets in which there is a unique highest out-of-sample accuracy.
All of the six methods yielded the unique highest out-of-sample accuracy for certain data sets, which indicates
that each type of classifier is able to exploit different aspects of the data set in their ownways to potentially lead to
higher-quality solutions. In all cases, the robust counterpart produced the highest number of uniquely optimal
solutions.

8.4. Predicting the Effectiveness of Robust Classification
Thus far, we have demonstrated the strength of robust methods compared to their nominal counterparts over the
set of 75 problems from the UCI Machine Learning Repository. For machine-learning practitioners, we would also
like to provide guidance about when it is worthwhile to use robust classification methods in practical applications.
In this section, we consider the problem of predicting whether or not a robust classifier is likely to improve out-of-
sample accuracy relative to the nominal method, using only the dimension of the training data and the accuracy of
the nominal method on these data. Note that we consider in-sample nominal accuracy because this is an attribute of
the training problem and therefore is available at the validation stage when selecting the final classificationmethod.

First, we considered the influence of nominal in-sample accuracy in isolation. Table 5 shows the improvement in
out-of-sample accuracy of robust-in-both methods over their nominal counterparts for different ranges of nominal
in-sample accuracy. We defined the robust improvement as the absolute difference in out-of-sample accuracy be-
tween themethods—that is, the accuracy of the robust-in-bothmethod less the accuracy of the nominalmethod. For
instance, if the robust-in-both and nominal methods had accuracies of 84.7% and 81.3%, respectively, the robust
improvement would be +3.4%.

The most significant result was for data sets where nominal SVM had in-sample accuracy below 60%. For these six
problems, robust-in-both SVM improved upon the out-of-sample accuracy in every instance and yielded an average

Table 4. Pairwise Comparisons of Robust Classification Methods Against Their Nominal Counterparts

Nominal method Robustness type Wins Losses Ties

Support vector machines Features 37 19 19
Labels 35 18 22
Both 39 20 16

Logistic regression Features 34 20 21
Labels 35 21 19
Both 40 20 15

Classification and regression trees Features 36 23 16
Labels 33 24 18
Both 33 24 18
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robust improvement of 10.7%. For logistic regression and SVM, we saw that as the nominal accuracy increased, both
the proportion of robust-in-both wins and the robust improvement in accuracy decreased. For CART, the robust
improvement was largely independent of the nominal accuracy, although the win proportion was higher for
problems with nominal accuracy in the range of 90%–100%. This suggests that nominal in-sample accuracy by itself
is not a strong predictor of robust effectiveness for CART methods. However, note that there are only four data sets
with a nominal CART accuracy below 70%, the region where the other robust methods are strongest.

Next, we considered the combined influence of nominal in-sample accuracy and dimension of data points on the
robust improvement. Figure 5 plots the winning method against these two attributes of the training problem. We
have constructed a dividing line that is identical on all three plots that partitions the points into two regions. This
line follows the equation log10 (p) � 0.05a − 2.5, where a is the in-sample accuracy of the nominal method on the
data set, p is the dimension of the data set, and the coefficients 0.05 and 2.5 were selected manually. In Table 6, we
present a breakdown of the relative performance of the nominal and robust-in-bothmethods in the two regions. For
all three classifiers, robust methods beat nominal methods for a majority of data sets in the region of lower nominal
accuracy and high dimensionality (above the dividing line). In this region, we saw significant average im-
provements in out-of-sample accuracy of 5.3% for SVM, 4.0% for logistic regression, and 1.3% for CART. Below the
dividing line, we observed that robust methods were still competitive with nominal methods, with neither offering
a significant advantage.

We also include in Table 6 a comparison of robust-in-both optimal decision trees to nominal optimal decision
trees. Previously, we have only considered the performance relative to CART in order to provide a strong
benchmark against the state-of-the-art methods, but it is also insightful to directly compare the robust formulation

Figure 4. Comparison of the Number of Data Sets for Which the Nominal and Robust-in-Both Approaches for Each Method
Give the Highest Out-of-Sample Accuracy

Note. CART, classification and regression trees; SVM, support vector machines.

Table 5. Improvement Due to Robustness by Baseline In-Sample Accuracy, Comparing the Baseline Method to the
Corresponding Robust-in-Both Classifier

Nominal method Nominal accuracy Wins Losses Ties Robust improvement

Support vector machines 0%–60% 6 0 0 10.7± 5.6%
60%–70% 5 3 1 2.2± 1.9%
70%–80% 8 5 3 0.9± 1.1%
80%–90% 6 3 1 0.3± 0.5%
90%–100% 14 9 11 0.0± 0.4%

Logistic regression 0%–60% 2 1 0 7.7± 5.2%
60%–70% 10 0 0 4.5± 1.2%
70%–80% 8 7 0 1.2± 1.0%
80%–90% 4 5 1 1.1± 0.9%
90%–100% 16 7 14 0.2± 0.1%

Classification and regression trees 0%–60% 1 0 2 0.7± 0.7%
60%–70% 1 0 0 2.4±—%
70%–80% 7 8 2 0.1± 0.9%
80%–90% 7 8 0 −0.3± 0.9%
90%–100% 17 8 14 −0.1± 0.6%
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to its nominal counterpart. Below the dividing line, the robust-in-both approach is not as strong compared to the
optimal decision trees as it is compared to CART. This can be attributed to the fact that the optimal decision trees are
a stronger classification method than CART and thus provide a stronger nominal baseline. However, we see that
above the line, the relative improvement of robust-in-both optimal decision trees over optimal decision trees is very
similar to their improvement over CART, with an average improvement in out-of-sample accuracy of 1.4%. This,
therefore, shows that the dividing line is a strong predictor for when robust methods perform strongest relative
to nominal methods, even in the presence of a significantly stronger nominal method.

It seems natural that the data dimension and nominal accuracy are likely indicative of the problem difficulty. This
implies that robust methods are most beneficial for harder problems. We also expect robust methods to perform

Figure 5. Plots ofWinningMethod (Nominal vs. Robust-in-Both) by the Baseline In-Sample Accuracy andDimension of Points
in Each Data Set

Notes. The dashed line divides each plot into two regions with different levels of robustness gain. Nominal and robust-in-both wins are
indicated by • and ×, respectively. CART, classification and regression trees; SVM, support vector machines.
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strongest on noisy data. Together, this offers evidence that problem difficulty and data uncertainty are correlated,
a result that is consistent with intuition. Based on the dividing line used earlier, we present the following decision
rule to address the task of predicting the effectiveness of robust methods over nominal:

log10 (p) ≥ 0.05a − 2.5, (31)

where p is the dimension of the data points, and a is the nominal in-sample accuracy. If this relationship is satisfied,
the data set falls into the “Above” region of Table 6, and therefore the robust classificationmethods are highly likely
to offer significant accuracy improvements over their nominal counterparts.

This demonstrates that we can predict with high accuracy a significant improvement in out-of-sample accuracy
when using robust methods for classification problems with high-dimensional data and low nominal accuracy.
This has large practical importance for machine learning; given a real-world classification problem, (31) gives
a simple but strong recommendation for when to use robust classification in place of nominal SVM, logistic
regression, or CART.

8.5. Comparison with Regularized Methods
To demonstrate the added value of our principled framework for modeling data uncertainty with robust opti-
mization, we compare the robust classification methods to other popular methods that exhibit robust properties
indirectly.

First, we compared our feature-robust SVM to ℓ1-regularized SVM, which is equivalent to classical SVM except
for the ℓ1 norm regularizer term. This is a feature-robust method under a different uncertainty set (see Section 4.2).
We implemented Problem (3) in JUMP and solved this problem with GUROBI. Experimentally, feature-robust SVM
and ℓ1-regularized SVM produced comparable classifiers; across all 75 data sets analyzed, the average difference in
out-of-sample accuracy between these two methods was 0.2± 0.4%. This, therefore, gives evidence that our
proposed uncertainty set for feature robustness is an equally strong model of the uncertainty in the features of
the data.

Next, to benchmark robust-in-both methods against regularized methods, we compared robust-in-both SVM
against ℓ1-regularized SVM, and robust-in-both logistic regression against ℓ1-regularized logistic regression (which
uses an ad-hoc method for introducing robustness). For ℓ1-regularized logistic regression, we implemented
Problem (5) with q � 1 in JUMP and solved this problem with IPOPT. We present the accuracy results for this
comparison in Table 7.

In Table 8, we present the relative performance of robust-in-both and regularized methods broken down into the
same two regions as defined in Section 8.4. As before, the regions were determined by the in-sample accuracy of the
nonrobust method and the data dimension. We saw that for both SVM and logistic regression, robust methods still
offered improved accuracy over regularized methods for a majority of data sets in the region of lower nominal
accuracy and high dimensionality (above the dividing line). In this region, we saw average improvements in out-of-
sample accuracy of 0.5% over regularized SVM and 1.9% over regularized logistic regression. Below the dividing
line, we observed that robust methods were still competitive with nominal methods, although regularized SVM
outperformed robust SVM by 0.7% in this region. If we consider alternate norms and compare robust SVM and
logistic regression against ℓ2-regularized methods instead, we obtain similar results.

These results demonstrate that classifiers do benefit from a principled approach to robustness evidenced in real-
world data, even when compared to regularized methods that are stronger than nominal ones. In all cases, we

Table 6. Improvement Due to Robustness by Baseline In-Sample Accuracy and Dimension of Points, Comparing the Nominal
Method to the Corresponding Robust-in-Both Classifier

Baseline method Region Wins Losses Ties Robust improvement

Nominal support vector machines Above 14 4 3 5.3± 1.9%
Below 25 16 13 −0.2± 0.3%

Nominal logistic regression Above 17 2 1 4.0± 1.0%
Below 23 18 14 0.4± 0.3%

Nominal optimal decision trees Above 7 3 4 1.4± 0.8%
Below 17 25 19 −0.7± 0.4%

Classification and regression trees Above 9 3 2 1.3± 0.9%
Below 24 21 16 −0.3± 0.5%

Note. Region “Above” refers to the top-left sections in Figure 5 (high data dimension, low baseline accuracy); region “Below” refers to the
bottom-right sections in Figure 5 (low data dimension, high baseline accuracy).
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Table 7. Out-of-Sample Accuracy Averaged Across Five Seeds for Each Method Using Both Regularized and Robust-in-Both
Methods on All Data Sets

Data set information
Support vector machines Logistic regression

University of California Irvine
data set name n p Regularized Robust Regularized Robust

acute-inflammations-1 120 7 1.0000 0.9083 1.0000 1.0000
acute-inflammations-2 120 7 1.0000 1.0000 1.0000 1.0000
arrhythmia 68 280 0.6154 0.6308 0.7538 0.6923
balance-scale 625 5 0.9200 0.9200 0.9200 0.9200
banknote-authentication 1,372 5 0.9869 0.9912 0.9855 0.9905
blood-transfusion 748 5 0.7638 0.7638 0.7664 0.7812
breast-cancer 683 10 0.9679 0.9559 0.9664 0.9574
breast-cancer-diagnostic 569 31 0.9719 0.9614 0.9684 0.9684
breast-cancer-prognostic 194 33 0.7692 0.7179 0.7692 0.7590
car-evaluation 1,728 16 0.7977 0.7826 0.7936 0.7925
chess-king-rook-vs-king 28,056 35 0.9004 0.9004 0.9004 0.9004
chess-king-rook-vs-king-pawn 3,196 38 0.9743 0.9687 0.9756 0.9743
climate-model-crashes 540 19 0.9611 0.9574 0.9556 0.9537
cnae-9 1,080 857 0.9769 0.9481 0.9713 0.9824
congressional-voting-records 232 17 0.9787 0.9826 0.9574 0.9826
connectionist-bench 990 11 0.9737 0.9768 0.9707 0.9768
connectionist-bench-sonar 208 61 0.7268 0.7561 0.7073 0.7659
contraceptive-method-choice 1,473 12 0.6800 0.6755 0.6814 0.6776
credit-approval 653 38 0.8626 0.8585 0.8733 0.8631
cylinder-bands 277 485 0.7200 0.6691 0.6182 0.6727
dermatology 358 35 0.9915 0.9803 1.0000 1.0000
echocardiogram 61 7 0.7000 0.6833 0.6667 0.7333
ecoli 336 8 0.9791 0.9582 0.9731 0.9582
fertility 100 13 0.8500 0.9000 0.8400 0.9000
flags 194 60 0.8872 0.8205 0.8615 0.8564
glass-identification 214 10 0.7302 0.7256 0.7395 0.7349
haberman-survival 306 4 0.7279 0.7344 0.7180 0.7311
hayes-roth 132 5 0.8519 0.6692 0.8074 0.7923
heart-disease-cleveland 297 19 0.8305 0.8203 0.8441 0.8305
hepatitis 80 20 0.8375 0.8125 0.8125 0.8250
hill-valley 606 101 0.8364 0.9620 0.9884 0.9636
hill-valley-noise 606 101 0.8132 0.8512 0.8678 0.8876
image-segmentation 210 20 0.9905 0.9476 0.9810 0.9762
indian-liver-patient 579 11 0.7155 0.7155 0.7224 0.7224
ionosphere 351 35 0.8743 0.8743 0.8943 0.8714
iris 150 5 1.0000 0.9800 1.0000 1.0000
letter-recognition 20,000 17 0.9916 0.9923 0.9904 0.9908
libras-movement 360 91 0.9694 0.9694 0.9583 0.9639
magic-gamma-telescope 19,020 11 0.7848 0.7924 0.7862 0.7919
mammographic-mass 830 11 0.8120 0.8060 0.8301 0.8217
monks-problems-1 124 12 0.6960 0.8000 0.6560 0.7920
monks-problems-2 169 12 0.5824 0.6176 0.5882 0.6235
monks-problems-3 122 12 0.9360 0.9333 0.9360 0.9250
mushroom 5,644 77 1.0000 1.0000 1.0000 1.0000
nursery 12,960 20 1.0000 1.0000 1.0000 1.0000
optical-recognition 3,823 65 0.9956 0.9966 0.9958 0.9971
ozone-level-detection-eight 1,847 73 0.9355 0.9295 0.9366 0.9317
ozone-level-detection-one 1,848 73 0.9702 0.9702 0.9675 0.9702
parkinsons 195 22 0.8872 0.8615 0.8462 0.8205
pen-based-recognition 7,494 17 0.9893 0.9891 0.9896 0.9897
pima-indians-diabetes 768 9 0.7647 0.7791 0.7660 0.7752
planning-relax 182 13 0.7027 0.7222 0.7027 0.7000
poker-hand 25,010 11 0.5018 0.5023 0.5005 0.5000
post-operative-patient 87 14 0.7059 0.7059 0.7059 0.6588
qsar-biodegradation 1,055 42 0.8692 0.8758 0.8578 0.8682
seeds 210 8 0.9333 0.9429 0.9619 0.9476
seismic-bumps 2,584 21 0.9342 0.9342 0.9335 0.9327
skin-segmentation 245,057 4 0.9326 0.9366 0.9187 0.9345
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observed that our robust methods performed best on classification problems that satisfy the decision rule given by
Equation (31).

8.6. Computational Tractability and Speed
Table 9 shows the complexity of each nominal method and its robust counterparts. Under all three classifiers, the
feature robustness does not change the nature of the optimization problem complexity. Logistic regression
changes from unconstrained convex optimization to constrained when label robustness is introduced. Label-
robust SVM introduces integer-valued variables and therefore becomes a mixed-integer optimization problem.
For decision trees, because the nominal formulation is mixed-integer optimization formulation, label robustness
did not change the nature of the problem. Robustness-in-both takes the maximum complexity between feature-
robust and label-robust formulations; in this case, the complexity is equal to that of the label-robust in all three
classifiers.

In order to provide empirical measures of the complexity of each method, we also compared the total time
required to solve a problem instance for eachmethodwith or without robustness across a selection of UCI data sets.
These sets were chosen to be representative of the various dimensions and separability among all data sets. For
the robust methods, a typical choice of ρ � 0.01, Γ � 10% was used. The problems were solved on a machine with
a 16-core, Intel Xeon E5-2687W (3.1 GHz) Processor and 128 GB RAM, and the total solver time taken to solve each
problem instance to optimalitywas recorded. All tests were limited to a single thread for consistency. If the problem
was not solved to optimality within an hour, the solve was terminated. In this case, we report the time taken to find
the solution that was best under the hour time limit. In particular for robust counterparts of CART, strong heuristics
gave very good solutions almost instantly, and sometimes these solutions were not further improved after an hour.

Table 8. Improvement due to Robustness by Baseline In-Sample Accuracy and Dimension of Points,
Comparing the Regularized Method to the Corresponding Robust-in-Both Classifier

Baseline method Region Wins Losses Ties Robust improvement

Regularized support vector machines Above 8 6 1 0.5± 1.1%
Below 18 29 13 −0.7± 0.5%

Regularized logistic regression Above 8 5 0 1.9± 1.6%
Below 24 28 10 0.1± 0.3%

Note. Region “Above” refers to the top-left sections in Figure 5 (high data dimension, low baseline accuracy); region
“Below” refers to the bottom-right sections in Figure 5 (low data dimension, high baseline accuracy).

Table 7. (Continued)

Data set information
Support vector machines Logistic regression

University of California Irvine
data set name n p Regularized Robust Regularized Robust

soybean-large 266 63 0.9094 0.8717 0.9170 0.8868
soybean-small 47 38 1.0000 1.0000 1.0000 1.0000
spambase 4,601 58 0.9287 0.9265 0.9241 0.9246
spect-heart 80 23 0.6375 0.7125 0.6750 0.7625
spectf-heart 80 45 0.6375 0.6500 0.6750 0.7625
statlog-project-german-credit 1,000 49 0.7420 0.7400 0.7350 0.7400
statlog-project-landsat-satellite 4,435 37 0.9867 0.9820 0.9851 0.9824
teaching-assistant-evaluation 151 53 0.7200 0.6733 0.8067 0.7067
thoracic-surgery 470 25 0.8511 0.8511 0.8532 0.8468
thyroid-disease-ann-thyroid 3,772 22 0.9905 0.9915 0.9910 0.9934
thyroid-disease-new-thyroid 215 6 0.8837 0.8884 0.8977 0.8977
tic-tac-toe-endgame 958 19 0.9812 0.9801 0.9801 0.9801
wall-following-robot-2 5,456 3 0.6440 0.5553 0.6537 0.6609
wall-following-robot-24 5,456 5 0.6436 0.6561 0.6565 0.6563
wine 178 14 0.9829 0.9657 0.9886 0.9943
yeast 1,484 9 0.6869 0.6902 0.6842 0.6929
zoo 101 17 1.0000 1.0000 1.0000 1.0000

Note. For each data set, the best result (or both in the case of a tie) for each method is indicated in bold.
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In a real-world application of these methods, the time taken to find the solution is the more important measure than
the time taken to prove the solution optimal; therefore, time to finding solution is used.

The results for selected data sets are presented in Table 10. In general, the nominal and feature-robust
classifiers required solver time of around the same order of magnitude. Label robustness generally slowed down
computation by 1–2 orders of magnitude; in particular, because label robustness for SVM changed the problem
from a linear-optimization problem to a mixed-integer optimization problem, the computational time was
considerably longer. The robust-in-both classifier tended to exhibit similar solution times to the label-robust
method.

8.7. The Price of Robustness
Introducing robustness in classifiers generates solutions that may be suboptimal under the nominal data, but are
likely to remain feasible or close to optimal when the data change (Bertsimas and Sim 2004). We can evaluate this
trade-off for the robust classifiers by comparing the out-of-sample accuracies, as evaluating the model accuracy on
the unobserved testing data can be thought of as a way of exposing the solution to perturbations in the train-
ing data.

The empirical findings show that robustness improves prediction accuracy in many real-world data sets across
all three classifications methods. In each classifier family individually, feature-robust, label-robust, and robust-in-
both generally had higher winning counts compared to their nominal counterpart. When comparing all three
nominal methods and their robust versions together, robustness continued to perform well in the majority of data
sets, particularly in subsets of data sets that were more difficult to classify. Overall, robust methods offered quality
solutions that nominal ones could not achieve.

Another practical aspect on the price of robustness is the computational time requirement. In most cases, the
computational time for robust methods is on the same order of magnitude as their respective nominal ones,
suggesting that robustification does not incur a significant burden on speed. It should also be noted that, as mixed-
integer optimization problems, label-robust SVM and CART can easily be limited by computational constraints.
Several problems we considered were not solved to optimality and, rather, were stopped after a smaller time limit

Table 9. Problem Complexity of Nominal and Robust Classification Methods

Method Nominal Feature-robust Label-robust Robust-in-both

Support vector
machines

Linear optimization Linear optimization Mixed-integer optimization Mixed-integer optimization

Logistic regression Unconstrained convex
optimization

Unconstrained convex
optimization

Constrained convex
optimization

Constrained convex
optimization

Decision trees Mixed-integer optimization Mixed-integer optimization Mixed-integer optimization Mixed-integer optimization

Table 10. Solver Time for Selected University of California Irvine Data Sets in Seconds for ρ � 0.01 and Γ � 10%

Method
Type of

robustness

University of California Irvine data set (number of points; dimension)

hayes-roth banknote-authentication nursery skin-segmentation flags cnae-9

(132; 4) (1,372; 4) (12,960; 19) (245,057; 3) (194; 59) (1,080; 856)

Support vector machines Nominal 0.00 0.02 0.05 454.38 0.01 0.02
Feature 0.00 0.02 0.36 553.94 0.01 0.32
Label 0.23 4.50 58.58 695.06a 0.37 2.41
Both 0.24 4.77 91.70 695.06a 0.60 15.81

Logistic regression Nominal 0.00 0.05 0.02 0.03 0.03 0.41
Feature 0.00 0.08 0.03 0.16 0.16 113.24
Label 0.03 0.24 4.70 56.33 0.06 0.52
Both 0.03 0.25 5.45 71.12 0.06 0.51

Decision trees Nominal 0.02 0.02 0.18 1.44 0.02 0.65
Feature 0.04 0.02a 1.06 1.46a 0.64 0.65a

Label 3.39 45.00a 0.18a 1.47a 3.01 183.43
Both 0.05 —b 0.18a 1.48a 2.39 146.01

aNot solved to optimality within the time limit. The time reported is instead the time taken to find the solution that is best at termination.
bThe robust-in-both optimal decision tree problem is infeasible for this particular choice of ρ/Γ.
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to get a strong, yet suboptimal, solution. Allowing for longer time limits in these cases has the potential for further
improving the accuracy.

9. Conclusions
In this paper, we consider three major classification methods under a modern robust optimization perspective:
SVM, logistic regression, and CART. For each classifier, we address uncertainties in features, labels, and both
simultaneously in a principled manner by constructing appropriate uncertainty sets and deriving robust coun-
terparts in the same way for all methods. We also discuss the implementation and practical solvability for each
method with robustness.

Synthetic experiments demonstrate that our methods derived by taking a principled approach to robust
classification may improve greatly upon existing classification methods. In the synthetic study, we show that
robust-in-both SVM and logistic regression outperform both nominal and regularized methods and produce
classifiers closer to the underlying truth, especially in the worst-case scenarios. In particular, the 90th per-
centile out-of-sample errors for our methods are significantly lower than the 90th percentile out-of-sample
errors for the benchmark methods. Because regularized SVM can be cast as a feature-robust optimization
problem for a particular uncertainty set, this shows that the choice of uncertainty set may be critical. For the
simple synthetic problems considered here, the robust methods derived using label uncertainty sets per-
formed best.

To evaluate the value of adding robustness in practice, we performed computational experiments on a large
sample of data sets from the UCI Machine Learning Repository, comparing nominal, regularized, and robust
methods for each of the three classifiers. We found that robust solutions provided higher out-of-sample accuracy
for many data sets, and the large majority of classifiers that strictly outperformed all other methods were robust. In
particular, we identified that high-dimensional and hard-to-separate problems benefited most from our principled
approach to robustness. The findings suggest that we can predict howmuch value robustness will add to a data set,
given only the accuracy of a classical method and dimension of the data set features. This allows us to offer
guidance as to when robust classification methods can deliver significant improvements in practical settings.

Appendix A. Equivalence with Classical Support Vector Machines
The feature-robust counterpart presented in Theorem 1 is similar to the classical SVM problem (2). Making the substitution
ξ̃i � ξi − ρ‖w‖q∗ in Problem (11), we obtain

min
w,b

nρ‖w‖q∗ +
∑n
i�1

ξ̃i

s.t. yi
(
wTxi − b

)≥ 1 − ξ̃i i � 1, . . . , n,

ξ̃i ≥−ρ‖w‖q∗ i � 1, . . . , n.

(A.1)

Comparing Problem (A.1) to the classical SVM formulation (2), we observe that adding feature robustness or regularization to
the hinge loss classifier leads to nearly identical optimization problems. Depending upon the choice of uncertainty set and the
selection of the regularizing term, this equivalence may be exact. Under the assumption that the training data are nonseparable,
Fertis (2009) has shown that the robust optimization problem

min
w,b

max
ΔX∈8̃x

∑n
i�1

ξi

s.t. yi
(
wTxi − b

)≥ 1 − ξi i � 1, . . . , n,

ξi ≥ 0 i � 1, . . . , n,

(A.2)

is exactly equivalent to the problem

min
w,b

ρ‖w‖q∗ +
∑n
i�1

ξi

s.t. yi
(
wTxi − b

)≥ 1 − ξi i � 1, . . . , n,
ξi ≥ 0 i � 1, . . . , n,

(A.3)

where

8̃x �
{
ΔX∈Rn× p

∣∣∣∣ ∑n
i�1

‖Δxi‖q ≤ρ

}
.
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It follows that (A.3) is equivalent to the classical SVM problem (2) for the choice of q∗ � 2, or the ℓ1-regularized SVM problem (3)
for the choice of q∗ � ∞. This implies that the classical and regularized SVM problems are indeed robust formulations of the
nominal hinge loss classifier under specific choices of uncertainty set.

Appendix B. Robust-in-Both Proofs
B.1. Soft-Margin Support Vector Machines
Proof of Theorem 7. Using a similar process as in the proof of Theorem 1, we rearrange the first constraint and solve the
minimization problem. Problem (27) can be reformulated as

min
w,b

max
Δy∈8y

∑n
i�1

ξi

s.t. yi
(
1 − 2Δyi

)(
wTxi − b

)≥ 1 − ξi + ρ‖w‖q∗ i � 1, . . . , n,

ξi ≥ 0 i � 1, . . . , n.

We can reformulate this as

min
w,b

max
Δy∈8y

∑n
i�1

max
{
1 − yi

(
1 − 2Δyi

)(
wTxi − b

) + ρ‖w‖q∗ , 0
}
.

Now we follow the approach in the proof of Theorem 4. □

B.2. Logistic Regression
Proof of Theorem 8. Using a similar process as in the proof of Theorem 2, we first solve the innermost minimization problem
and show that Problem (29) is equivalent to

max
β,β0

min
Δy∈8y

−∑n
i�1

log
(
1 + e−yi(1−2Δyi)(βTxi +β0)+ρ‖β‖q∗

)
. (B.1)

Now we follow the approach in the proof of Theorem 5. Because the polyhedron {Δy ∈Rn|∑n
i�1Δyi ≤ Γ, 0≤Δyi ≤ 1} has

integer extreme points, the inner minimization problem above has the same objective as when the integer constraints are
relaxed:

min
Δy

−∑n
i�1

log
(
1 + e−yi(1−2Δyi)(βTxi +β0)+ρ‖β‖q∗

)
s.t. 0≤Δyi ≤ 1 i � 1, . . . , n,∑n

i�1
Δyi ≤ Γ.

Define the function fi(Δyi) � −log
(
1 + e−yi(1− 2Δyi)( βTxi + β0) +ρ‖β‖q∗

)
for i � 1, . . . , n. Because Δyi ∈ {0, 1}, we can express fi(Δyi) as

fi
(
Δyi

) � [ f (1) − f (0)]Δyi + f (0)

� log
1 + e−yi(βTxi + β0)+ ρ‖β‖q∗

1 + eyi(βTxi + β0)+ ρ‖β‖q∗

( )
Δyi − log

(
1 + e−yi(βTxi + β0) +ρ‖β‖q∗

)
.

The inner minimization problem can thus be expressed as

min
Δy

∑n
i�1

log
1 + e−yi(βTxi + β0)+ ρ‖β‖q∗

1 + eyi(βTxi + β0)+ ρ‖β‖q∗

( )
Δyi − log

(
1 + e−yi(βTxi + β0) +ρ‖β‖q∗

)[ ]

s.t. 0≤Δyi ≤ 1 i � 1, . . . , n,

∑n
i�1

Δyi ≤ Γ.

By strong duality, the inner minimization problem has the same objective value as its dual problem. Replacing the inner
minimization in Problem (B.1) with the dual problem yields the desired result. □

B.3. Optimal Decision Trees
Proof of Theorem 9. Since the set of constraints affected by applying Theorem 3 and set of constraints affected by applying
Theorem 6 are disjoint, we can simply apply them both simultaneously to yield the stated result. □
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The full robust-in-both optimal tree formulation is therefore

min
∑K
k�1

fk −
∑K
k�1

λkdk (B.2a)

s.t. gk �
∑n
i�1

1 − yi
2

zik k � 1, . . . ,K, (B.2b)

hk �
∑n
i�1

1 + yi
2

zik k � 1, . . . ,K, (B.2c)

fk ≤ gk − Γµ1,k −
∑n
i�1

ν1,ik +M[wk + (1 − ck)] k � 1, . . . ,K, (B.2d)

fk ≤ hk − Γµ2,k −
∑n
i�1

ν2,ik + M[(1 − wk) + (1 − ck)] k � 1, . . . ,K, (B.2e)

fk ≥ gk + Γµ3,k +
∑n
i�1

ν3,ik −M[(1 − wk) + (1 − ck)] k � 1, . . . ,K, (B.2f)

fk ≥ hk + Γµ4,k +
∑n
i�1

ν4,ik −M[wk + (1 − ck)] k � 1, . . . ,K, (B.2g)

µm,k + νm,ik ≥ −yi zik i � 1, . . . , n, k � 1, . . . ,K, m � 1, 4, (B.2h)
µm,k + νm,ik ≥ yi zik i � 1, . . . , n, k � 1, . . . ,K, m � 2, 3, (B.2i)
dk � 1 k � �K/2�, . . . ,K, (B.2j)
dk ≤ dj k � 1, . . . ,K,∀j∈3k, (B.2k)

dk +
∑p
l�1

akl � 1 k � 1, . . . ,K, (B.2l)

∑K
k�1

zik � 1 i � 1, . . . , n, (B.2m)

zik ≤ dk i � 1, . . . , n, k � 1, . . . ,K, (B.2n)
zik ≤ 1 − dj i � 1, . . . ,n, k � 1, . . . ,K,∀j∈3k, (B.2o)∑n
i�1

zik ≥Nck k � 1, . . . ,K, (B.2p)

ck ≥ dk −
∑
j∈3k

dj k � 1, . . . ,K, (B.2q)

aTj xi + ρ + ε≤ bj + (1 − zik) i � 1, . . . , n, k � 1, . . . ,K, ∀j∈3u
l , (B.2r)

aTj xi − ρ≥ bj + (1 − zik) i � 1, . . . , n, k � 1, . . . ,K, ∀j∈3l
k, (B.2s)

ak ∈ {0, 1}p k � 1, . . . ,K, (B.2t)
0≤ bk ≤ 1 k � 1, . . . ,K, (B.2u)
zik,wk, ck, dk ∈ {0, 1} i � 1, . . . , n, k � 1, . . . ,K, (B.2v)
µm,k, νm,ik ≥ 0 i � 1, . . . , n, k � 1, . . . ,K, m � 1, . . . , 4. (B.2w)
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